Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions
نویسندگان
چکیده
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل3d Steady Compressible Navier–stokes Equations
2000 Mathematics Subject Classification. Primary: 76N10; Secondary: 35Q30.
متن کاملAsymptotic Behavior of Solutions to the Full Compressible Navier-stokes Equations in the Half Space
Abstract. The one-dimensional motion of compressible viscous and heat-conductive fluid is investigated in the half space. By examining the sign of fluid velocity prescribed on the boundary, initial boundary value problems with Dirichlet type boundary conditions are classified into three cases: impermeable wall problem, inflow problem and outflow problem. In this paper, the asymptotic stability ...
متن کاملBoundary Layer Analysis of the Navier-stokes Equations with Generalized Navier Boundary Conditions
We study the weak boundary layer phenomenon of the Navier-Stokes equations with generalized Navier friction boundary conditions, u ·n = 0, [S(u)n] tan +Au = 0, in a bounded domain in R when the viscosity, ε > 0, is small. Here, S(u) is the symmetric gradient of the velocity, u, and A is a type (1, 1) tensor on the boundary. When A = αI we obtain Navier boundary conditions, and when A is the sha...
متن کاملLarge-time behavior of the weak solution to 3D Navier-Stokes equations
The weak solution to the Navier-Stokes equations in a bounded domain D ⊂ R3 with a smooth boundary is proved to be unique provided that it satisfies an additional requirement. This solution exists for all t ≥ 0. In a bounded domain D the solution decays exponentially fast as t → ∞ if the force term decays at a suitable rate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure & Applied Analysis
سال: 2021
ISSN: 1553-5258
DOI: 10.3934/cpaa.2021080